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Abstract. The status of the relativistic model for microarcsecond astrometry is reviewed.
Theoretical foundations of the model and its main components are elucidated. Difficulties
of increasing the accuracy of the model from micro- to nanoarcseconds are discussed. Each
effect included in the model can be used to test the theory predicting this effect. A brief
overview of the possible relativistic tests with astrometric data is given. It is stressed that
systematic errors in the observational data and in the auxiliary input parameters (e.g. orbit
of the observer) must be taken very seriously when conceiving tests of fundamental physics
with astrometry.

1. Introduction

In the last 20 years, astrometry, being the old-
est branch of astronomy, has made a stunning
progress. Within the next 5–10 years the ESA
cornerstone mission Gaia is expected to reach
an accuracy of up to several microarcseconds
for about one billion celestial objects. This will
be the final step for astrometric methods to be-
come an important and unique source of phys-
ical and astrophysical information.

Gaia as well as Hipparcos and most of
other planned instruments of space astrometry
are not intended to observe close to the Sun
where relativistic effects are especially large.
For example, Gaia is indented to observe fur-
ther than 45◦ from the Sun. However, it is
easy to estimate that even for observations so
far from the Sun relativistic effects may reach
about 40 milliarcseconds for individual obser-
vations. This means that relativistic effects are
4 orders of magnitude larger than the goal ac-
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curacy of the mission and, therefore, 5 orders
of magnitude larger than the required accu-
racy of the model. At this level one cannot ex-
pect to successfully cope with general relativ-
ity in a form of small additional corrections.
On the contrary, each aspect of data process-
ing and data modelling must be formulated in
the language of general relativity, each param-
eter used in the data processing or estimated
as a result of the data processing must be de-
fined in the framework of general relativity.
Given the wide variety of input parameters and
the broad community providing those param-
eters it becomes clear that it is this general-
relativistic consistency throughout the whole
data processing that represents the main chal-
lenge of the relativistic modelling for astrome-
try missions like Gaia.

2. Relativistic astronomical reference
systems

A good way to ensure the basic consistency is
to define some standard relativistic reference
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systems and consequently use them for each
components of the data modelling. Standard
relativistic reference systems – the BCRS and
GCRS – have been constructed by a num-
ber of authors and officially adopted by the
International Astronomical Union (Soffel et al.
2003). Both reference systems are defined by
their metric tensors in harmonic gauge. Both
reference systems are constructed for a “central
body” embedded in a background of external
gravitational fields. The external gravitational
field in these reference system are represented
by tidal potentials and the gravitational field of
the “central body” is the same as if the body
were isolated when the tidal external potentials
are neglected. The existence of such reference
systems in general relativity is guaranteed by
the Einstein Equivalence Principle. Both ref-
erence system are physically adequate to de-
scribe physical processes in certain vicinity of
the central body. These reference systems rep-
resent direct relativistic generalization of the
Newtonian concept of quasi-inertial reference
systems.

In the case of BCRS, the whole Solar sys-
tem is considered as the compound “central
body”. The external gravitational potentials in
the BCRS metric are usually neglected, but can
be also retained to give the tidal potentials due
to external bodies: the stars and other bodies
of the Galaxy, other Galaxies and the Universe
as a whole (Klioner & Soffel 2004). Usually
these tidal gravitational fields are considered
as fully negligible for practical applications.
This is also the case for space astrometry at mi-
croarcsecond level. The Earth alone is consid-
ered as a central body for the GCRS, the metric
tensor of which also contains the tidal poten-
tials of the other solar system bodies. The same
technique can be applied to construct a physi-
cally adequate reference system of an observer:
the mass-less observer should be chosen as the
central body and the gravitational field of all
massive bodies are given by tidal potentials.
Klioner (2004) has shown that in such a local
reference system of an observer the tangents
to the coordinate lines at the origin coincide
with the vectors of coordinate-induced tetrad.
This property is used to formulate observable
quantities directly from the coordinate quan-

tities defined in the observer’s local reference
frame.

All these reference systems were originally
constructed in the first post-Newtonian approx-
imation. The extension to include the limited
number of post-post-Newtonian effects needed
for microarcsecond astrometry is straightfor-
ward (see below). To reach higher accuracy
a full post-post-Newtonian formulation is re-
quired. Some work towards the complete post-
post-Newtonian formulation has been already
done (Klioner et al. 2012).

3. Relativistic model for astrometry

The relativistic reference systems can be used
to model any kinds of astronomical obser-
vations. Generic scheme for relativistic mod-
elling of high-accuracy astronomical observa-
tions is given e.g. by Klioner (2003). The ap-
plication of this scheme to astrometric obser-
vation is straightforward and also described in
Klioner (2003, 2004). The main components of
the model are:

(1) The model for astrometric parameters
in the BCRS: position, proper motion, parallax,
light travel-time effects for stars and quasars,
and orbital parameters (e.g. initial conditions
or osculating elements) for solar system ob-
jects. This model represent the standard astro-
metric model of a source in BCRS coordinates.

(2) The model for the motion of the ob-
server (e.g. Gaia satellite) in the BCRS. This
model usually consists of the EIH-like rela-
tivistic equations of motion of a test body in
the BCRS.

(3) The model for light propagation in the
BCRS coordinates from a source at the mo-
ment of light emission to the observer at the
moment of observation. This is the most com-
plicated part of the model and should include
monopole light deflection due to a large num-
ber of bodies (see Fig. 1 and Table 1), smaller
effects due to translational motion of the bod-
ies and due to quadrupole gravitational fields
of the giant planets of the solar system. The
monopole effects must include also the so-
called enhanced post-post-Newtonian effects
(see below) that may reach 16 µas in the Gaia
data.
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(4) The relativistic model of aberration,
that is, of the difference between the observed
direction as seen by the real (moving) observer
and a fictitious observer co-located with the
real observer at the moment of observation, but
not moving in BCRS coordinates. Note that
this definition of aberrational effects is valid
even in the exact General Relativity and is not
related to any approximation schema.

The model used specifically for Gaia is
called GREM and described in a number of
publications (e.g. Klioner 2003, 2004). We will
not go into details of the model here, but
only briefly discuss the enhanced post-post-
Newtonian effects. It is perfectly true that the
post-Newtonian metric is sufficient to describe
the astrometry with an accuracy of 1 µas pro-
vided that observations closer than ∼3.3 an-
gular radii of the Sun are excluded. However,
the standard post-Newtonian solution for light
propagation is not sufficient to reach the accu-
racy of 1 µas. The largest post-post-Newtonian
effects may reach 16 µas even if observa-
tions close to the Sun are not considered.
Klioner & Zschocke (2010) have demonstrated
that some formally post-post-Newtonian terms
in the light propagation formulas, called en-
hanced post-post-Newtonian terms, may be-
come large and should be taken into account if
the accuracy of 1 µas is desired. Since the com-
plete post-post-Newtonian formulas are fairly
complicated one needs an optimized formula
for the light propagation that contain only
those terms that are really necessary to reach
the accuracy of 1 µas. Note that the idea of nu-
merical accuracy and not the analytical order
of smallness of various terms was not widely
used in the field of general relativity. Finally,
the optimized formulas have been derived by
Klioner & Zschocke (2010) and Zschocke &
Klioner (2010):

n = σ + dσ Q (1 + Q |xobs|) ,
Q = −(1 + γ)

m
|dσ|2

(
1 +

σ · xobs

|xobs|
)
, (1)

n = k + d P (1 + P |xobs|) ,
P = −(1 + γ)

m
|d|2

( |xsource| − |xobs|
|R| +

k · xobs

|xobs|
)

(2)

where R = xsource − xobs, k = R/|R|, d =
k × (xobs × k), dσ = σ × (xobs × σ), γ is the
PPN parameter equal to 1 in general relativ-
ity, m = GM/c2 is the Schwarzschild radius of
the deflecting body, xsource is the BCRS posi-
tion of the source at the moment of emission,
xobs is the position of the observer at the mo-
ment of observation, σ is the direction of light
propagation at past null infinity and character-
izes the remote source (star or quasar), n is the
direction of light observed by a fictitious ob-
server located at the same position as the real
observer and being at rest with respect to the
BCRS. Eq. (1) is suitable for remote sources
(stars and quasars) and Eq. (2) is useful for so-
lar system objects. Both equations give numer-
ical accuracy of 1 µas for an observer situated
in the Solar system provided that observations
within 3.3 angular radii from the Sun are ex-
cluded.

The model is not only complete at the ac-
curacy level of 1 µas but also highly opti-
mized. For example, the quadrupole deflec-
tion defined by a complicated formula is only
computed when its magnitude really exceed
the requested accuracy level. To this end a
set of highly efficient upper estimates of the
quadrupole light deflection has been found by
Zschocke & Klioner (2011). These estimates
allows one to decide if the quadrupole deflec-
tion is large enough using only a few float-
point operations. Besides this the model can
be automatically simplified if lower accuracy is
requested. Lower accuracy can be used at early
stages of data processing when the ultimate ac-
curacy is not expected and/or for faint sources
having lower observational accuracy. Table 2
gives the performance of an implementation of
the model on a typical CPU as available in the
year of 2011.

4. Is nanoarcsecond astrometry
possible?

After 20 years of technical and scientific devel-
opment that was clearly influenced by financial
constraints, the accuracy of Gaia is now fixed
at the level of some µas for the best (“Gaia-
optimal”) stars. The actual performance de-
pends on the magnitude and color of the source
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Fig. 1. Magnitude of light deflection due to solar system planets at some fixed moment of time as distributed
on the celestial sphere shown from three sides. The larger the deflection the darker is the area. Although
the deflection from each planet monotonically falls off with the angular distance from the planet, vectorial
character of the deflection leads to a complicated distribution of the magnitude when several planets come
into play. The solid lines are lines of constant declination.

and on its position on the sky (ESA 2011).
It is clear that with this accuracy Gaia is ex-
pected to deliver a lot of important scientific
results. Nevertheless it is interesting to under-
stand what sort of science can be achieved with
even higher astrometric accuracy than that of
Gaia. Some impressive answers are given in
Perryman (2000) and Unwin (2009). These re-
ports were compiled for the original design of
Gaia and for SIM, that is, for an accuracy 4–
8 times better than that of the current Gaia. It
seems that the number of important astrophys-
ical applications rapidly grows with increas-
ing accuracy. Among the applications one can
find the search for Earth-mass exoplanets in
the habitable zones of nearby stars, further in-
vestigation of the distribution of dark matter
in the Milky Way and Local Group, measur-
ing masses of compact Galactic objects with
microlensing, investigation of compact binary
systems with black holes and neutron stars, and
others. Further increase of accuracy, towards
1–10 nanoarcseconds would open research op-
portunities that looks as science fiction nowa-
days. To give an example, it would be possible
to directly measure trigonometric parallaxes of
cosmologically relevant objects and investigate
possible non-homogeneity of the Hubble ex-
pansion.

Increasing astrometric accuracy from mi-
croarcseconds to nanoarcseconds is a tremen-

dous task which will require many components
of current astrometric machinery to be substan-
tially improved. Currently, it is not clear if a
sort of nanoarcsecond astrometry is possible
and even makes sense. Many questions arise
in this respect. What sort of technology would
allow nanoarcsecond accuracy technically? Do
natural sources (celestial objects) that are suf-
ficiently stable (in the astrometrical sense) at
the level of 1 or 10 nanoarcsecond exist? (And
if yes, in which waveband – optical, IR, radio,
etc. – one should observe them?) Is it possible
to compute time-dependent part of the effects
of interstellar and interplanetary medium on
light propagation with that accuracy? Finally,
closer to the subject of this paper, is it pos-
sible to trace a light ray observed in the so-
lar system back to the source with an accu-
racy of a nanoarcsecond? The background of
this last question is the fact that starting from
some level of accuracy, light deflection in the
gravitational field of the bodies of our Galaxy
and those in the solar system become chaotic
(similar to the chaotic atmospheric refraction
leading to the blurring and twinkling of im-
ages seen through the atmosphere). Moreover,
even forgetting about possible chaotic effects,
several key elements of a relativistic model for
nanoarcsecond astrometry are currently miss-
ing. It seems that to arrive at nanoarcsecond
accuracy one needs to derive



998 Klioner: Relativistic modelling in astrometry

– the post-post-Minkowskian or post-post-
Newtonian metric tensor of a system of N
arbitrarily moving bodies with full multi-
pole structure, and

– the post-post Minkowskian or at least
post-post-Newtonian analytical light-
propagation laws in the field of N arbitrary
moving bodies with full multipole struc-
ture.

Depending on how close to the Sun or other
stellar-mass objects one expects to observe one
may need to take into account also higher-order
effects. Let us also note that if analytical solu-
tions for light propagation are not feasible, one
could, in some cases, resort to numerical solu-
tions of geodetic equations.

5. Testing fundamental physics with
astrometry

Clearly, any effect used in an observational
model can be used to test the theory predict-
ing this effect. This is also true for astrometric
observations with Gaia or other high-accuracy
astrometry projects. Let us briefly list what is
planned for Gaia:

– Tests of overall gravitational light deflec-
tion expressed by the PPN parameter γ.
This is the most precise test dominated by
the monopole light deflection due to the
Sun.

– Tests of Local Lorentz Invariance from
aberration (Klioner et al. 2010).

– Tests of subtle structure of the light de-
flection close to giant planets: translational
gravitomagnetic effect and quadrupole de-
flection.

– Tests of possible non-Einsteinian effects in
the motion of solar system bodies (addi-
tional perihelion precession, Nordtvedt ef-
fects, time-dependence of the Newtonian
gravitational constant, etc.).

– Attempts to measure the masses of invisi-
ble components of compact binaries from
the corresponding astrometric wobble of
visible components (e.g., the masses of
black hole candidate in Cyg X1).

– Various tests related to pattern matching in
the proper motions and/or residuals of in-

dividual observations: acceleration of the
solar system relative to quasars, primordial
ultra-low frequency gravitational waves,
higher-frequency gravitational waves.

The main challenge for these tests is to cope
with possible systematic errors in the obser-
vational data and/or auxiliary input parameters
used in the data processing. The fight against
systematic errors should go along three lines:

1. The role of systematic errors should
be clearly understood theoretically. One
should clearly see which systematic errors
are able to bias the estimates of physically
relevant parameter (e.g. the PPN parameter
γ).

2. One should attempt to design the instru-
ment in such a way that these systematic
errors are suppressed as much as possible
or at least can be calibrated independently.

3. The presence of these systematic errors in
observations should be analyzed statisti-
cally.

In principle, the problem of systematic errors
is fairly standard. A good example for astrom-
etry with scanning satellites with two fields of
view like Hipparcos and Gaia is the degener-
acy between the parallax zero point and cer-
tain periodic change in the angle between two
fields of view (basic angle). It is because of
this degeneracy that the basic angle stability or
measurability over the times shorter than about
one rotational period of a satellite is a scientific
requirements for scanning satellites and repre-
sents an important engineering challenge.

One can demonstrate that in principle, for
scanning satellites with two fields of view the
PPN γ is degenerated with a certain other
change of basic angle and, independently, with
a certain error in the barycentric velocity of
the observer. In these circumstances statistical
analysis should be used to investigate the reli-
ability of the estimate of γ.

It is also important to consider the corre-
lations between γ and other parameters since
large correlations reduce the accuracy and re-
liability of parameter estimations. It is well
known that γ is substantially correlated with
the parallax zero point. Using Eqs. (3.11) of
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Table 1. Maximal light deflection due to individual bodies of the solar system as expected in Gaia
data. Index ’∗’ means that the body itself can, in principle, be observed by Gaia and the shown
deflection is that for grazing rays. For bodies shown in parentheses (Mercury and the Moon) Gaia
scanning law prohibits observations close to them and the expected maximal light deflection is
below 1 µas. ψmax is the maximal angle at which the deflection attains still 1 µas(irrespective of
how close to that body Gaia can observe).

body Sun (Mercury) Venus∗ Earth (Moon) Mars∗ Jupiter∗ Saturn∗ Uranus∗ Neptune∗

deflection (µas) 9900 0.3 493 5 0.14 116 16270 5780 2080 2530
ψmax 180◦ 9′ 4.5◦ 125◦ 5◦ 25′ 90◦ 17◦ 71′ 51′

Table 2. Performance of an implementation of the relativistic model for Gaia on a typical CPU.

target accuracy for stars/quasars for Solar system objects

0.1 µas 3.1 µs 5.3 µs
10.0 µas 1.7 µs 2.1 µs

1000.0 µs 1.6 µs 2.0 µs

Mignard (2001) one can derive analytical for-
mula for this correlation in one field of view:

ργρ = −
√

2
1 + sec χ

, (3)

where χ is the solar aspect angle: the angle be-
tween the rotational axis of the satellite and the
direction to the Sun. Considering the fact that
the attitude of the satellite should be also de-
termined from the same observations one con-
cludes that only the difference of the light de-
flections in two fields of view can be used to es-
timate γ (Lindegren 2011) (This is also true for
all other parameters not related to the attitude).
The correlation between the differences, in two
fields of view, of the signals coming from γ and
from parallaxes can also be computed analyti-
cally:

ρdiff
γρ = − 2

√
cos χ

1 + cos χ

√
sin2 Γ

2
+ cos2 Γ

2
cos2 χ , (4)

where Γ is the angle between two fields of
view (basic angle). For Gaia one has χ = 45◦

and Γ = 106.5◦ which leads to ργρ = −0.910
and a slightly smaller correlation for the differ-
ences: ρdiff

γρ = −0.893. In reality this correlation
should be even lower because of the differen-
tial effects within each field of view and the
fact that the light deflection due to the planets
is not correlated with parallaxes.

6. Concluding remarks

Relativistic model for microarcsecond astrom-
etry at an angular distances of more than a few
degrees from the Sun is well understood and
represents neither theoretical nor practical dif-
ficulties. The formulation of such a model is
sufficiently compact to allow massive calcula-
tions (up to 1012 individual observations and
a total of up to 1015 applications of the model
are expected for Gaia). Significant theoretical
efforts are needed to construct the relativistic
model for the accuracy of 1–10 nanoarcsec-
onds – the accuracy that promises to provide
a truly new insight to the Universe as a whole.
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